MATH 2048 2(4-25 Midtern 2 Subtion
1(a).
$$p = \frac{1}{2} e_{1}^{2}$$

 $\Rightarrow [T_{3}]_{\beta} = \binom{2}{1} = (t+1)(t-1)$
Let $\lambda_{1} = 1$, $\lambda_{2} = -($.
 $E_{\lambda_{1}} = N(\binom{-1}{1}, \binom{-1}{2}) = span \{\binom{1}{1}\}$
 $E_{\lambda_{2}} = N(\binom{-1}{1}, \binom{-1}{2}) = span \{\binom{-1}{1}\}$.
 $dim(E_{\lambda_{1}}) + dim(E_{\lambda_{2}}) = 2 = dim(R^{2})$
 $\therefore T_{2}$ diagonalisable. $\mu(n) = \vartheta(\lambda_{1}) \forall i$
(b). Suppose $(\chi_{1}, ..., \chi_{n})$ is an eigenvector with
 $eigenvalue \lambda$.
Then $\chi_{i_{1}} = \lambda \chi_{i}$ $\forall i$
 $= \Im \chi_{i} = \lambda^{i_{-1}} \chi_{i}$ and $\lambda^{i} = 1$
Then $E_{\lambda} = span \{(1, \lambda, \lambda^{2}, ..., \lambda^{n-1})\}$
 $with dimension [], and$
 $\lambda^{n} = (] implies \lambda = (] or -(.$
 $S_{D} \Sigma_{i}\mu(\lambda_{i}) \leq 2 \cdot 1 = 1 < n.$ for $n \geq 3$.

2(a).

$$p = \{1, x, x^{2}\}.$$

$$(-1 \ 0 \ 0)$$

$$[T]p = \begin{pmatrix} -1 \ 0 \ 0 \\ 3 \ 3 \ -1 \end{pmatrix}$$

$$f_{T}(t) = (-1 - t)((3 - t)(1 - t) + 1)$$

$$= -t^{3} + 3t^{2} - 4$$

$$Py \quad Cayley - Havilton \quad Thm, f_{T}(T) = To$$

$$... f^{3} + 3T^{2} - 4I = T_{0} \Rightarrow T^{3} = 3T^{2} - 4I.$$

$$(b). \quad [g]p = (0, 3, 2)^{T}.$$

$$(b). \quad [g]p = (0, 3)^{T}.$$

$$(b). \quad [g]p = (0, 3)^{T}.$$

$$(c). \quad [g]p = (0, 3)^{T}.$$

$$(c).$$

 $f_{T_{w}}(t) = t^2 - 4t + 4$

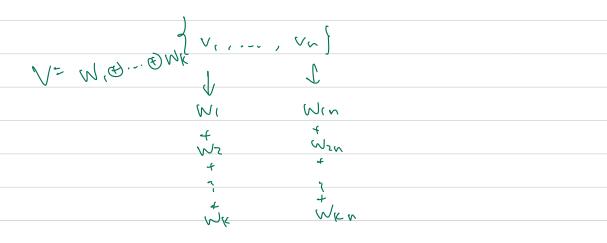
V I (m) ¢ 0 19. F 3 (=>) Suppose T* onto. Then &fev*, $\exists g \in W^*$ s.t. $T^*(g) = f = gT = f$. Pick x = N(T), gT(x)=f(x) => f(x)=0 Vf $\rightarrow \chi = 0.$ i. T one - to - one.

(=) Suppose T one-to-one. Let B be basis for V => T(B) (in ind. Extend & to & as a basis for W.

Pick f e V*, define g e W* as $g(w) = \int f \sigma T'(w) \quad if \quad w \in T(p) \\ 1 \quad 0 \quad vf \quad w \in Y \setminus T(p).$

Then UVEB $T^{*}(g)(v) = g(Tv)$ = $f \circ T^{-1}(T_V)$ $= \int (v)$. => 7* g ~f. => 7* onto

4. Since U is dragonalizable.
Let
$$V = E_{\lambda_{1}} \otimes \dots \otimes E_{\lambda_{k}}$$
,
where $E_{\lambda_{i}} \otimes \dots \otimes E_{\lambda_{k}}$,
 $Where E_{\lambda_{i}} \otimes \dots \otimes E_{\lambda_{k}}$,
 $Where E_{\lambda_{i}} \otimes \dots \otimes E_{\lambda_{k}}$,
 $WT(x) = TU(x)$
 $UT(x) = TU(x)$
 $UT(x) = \lambda_{i}T(x) \Rightarrow T(x) \in E_{\lambda_{i}}$
 $\Rightarrow E_{\lambda_{i}} \text{ is } T - invariant ~ V_{i}$
Let $W_{i} = E_{\lambda_{i}}$, then (4).
 $V = W_{i} \otimes \dots \otimes W_{k}$ is a direct sum
decomposition of V into T -invariant subspaces.
Since T is diagonalizable, let $\{V_{i}, \dots, V_{n}\}$.
be eigenborns of T for V .
 B_{Y} (4), for all $V_{j} \equiv I$ $W_{ij} \in W_{i}$ W_{i} .
 $= T(V_{j}) \approx \Sigma_{i} T(W_{ij}) = W_{j}$
 $\lambda_{j}V_{j} = \Sigma_{i} T(W_{ij}) = V_{j}$
 $\lambda_{j}W_{j} = \Sigma_{i} T(W_{ij}) = V_{j}$
 $\lambda_{j}W_{ij} = T(W_{ij}) = V_{i}$, by (4).
 $\dots W_{ij} \equiv 0$ or $\int_{0}^{\infty} T$



5(a). Suppose
$$TV = \lambda V$$
, $V \neq 0$.
Then easy to see $T^{m}V = \lambda^{m}V$ by MT
 $\Rightarrow \lambda^{m}$ is an eigenvalue of $T^{m}V = \lambda^{m}Z$.

(b).
$$\lambda = 0$$
 is obvious. So assume $\lambda \neq 0$.
Suppose λ^m is an eigenvalue of $T^m \forall m \ge 2$,
but λ is not an eigenvalue of T .
Let (p_i) be a strictly increasing seq of primes,
Pick. $V_i \in V$ s.t. $T^{P_i}V_i = \lambda^{P_i}V_i$.
Observe that $T^{ap_i}V_i = \lambda^{ap_i}V_i$ by (a). (a).
Claim: $\lambda^{V_i}, \dots, V_k$ in. ind. $\forall k \in \mathbb{N}$.
Proof: $k = 1$ true.
Suppose $k=n$ true, $k=n+1$ not true.
Then $V_{n+1} = \sum_{i=1}^{n} a_i V_i$ (b) by (c)
 $i = \lambda^m V_{n+1} = \lambda^m V_{n+1}$ by (c)
Since M_i , provide M_i by (c)
Since M_i , provide M_i by (c)
 $M_i = \lambda^m V_{n+1}$ by (c)
 M

We have
$$\int T^{aM} V_{nti} = \lambda^{aM} V_{nti}$$

 $\int T^{bpni} V_{nti} = \lambda^{bpni} V_{nti}$ ($\neq 0$)
 $\Rightarrow T (T^{bpni} V_{nti}) = \lambda (T^{bpni} V_{nti})$
 $\Rightarrow \lambda \text{ is an eigenvalue of } T. \therefore Contradiction
So by MI, the claim is proved.
However, it is not possible to have her
lin. ind. vector when dim(U)=n. => Contradiction
 \therefore The converse of (a) is proved.
(c). Let $V = R \oplus R \oplus ...$
 $Wn = e^{2\pi i/n}$, $W_n^n = 1$
 $T (e_i) = W_{iti} e_i$
Then $T^m e_{m-1} = e_{m-1} = \lambda^m e_{m-1}$. for $\lambda = i$
But $\lambda = i$ is not an eigenvalue of T as
 $\neq v \in V$ s.t. $T(v) = v$.
 \therefore The statement is disproved.$

 $T (T^{Ly} v_{i}) = \lambda (\lambda^{by} v_{i}) g$ $T^{byti} v_{i} = \lambda^{byti} v_{i} g$ $T^{x} v_{i} = \lambda^{x} v_{i} \Rightarrow T^{ax} v_{i} = \lambda^{ax} v_{i}$ $T^{y} v_{1} = \lambda^{y} v_{2} \Rightarrow T^{by} v_{2} = \lambda^{by} v_{2}$